If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+3x-180=0
a = 5; b = 3; c = -180;
Δ = b2-4ac
Δ = 32-4·5·(-180)
Δ = 3609
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3609}=\sqrt{9*401}=\sqrt{9}*\sqrt{401}=3\sqrt{401}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{401}}{2*5}=\frac{-3-3\sqrt{401}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{401}}{2*5}=\frac{-3+3\sqrt{401}}{10} $
| n/2+1=0 | | 5x=4x-1/2 | | 2x-3/4=5+x/3-1 | | 3-2x=1-4x | | 6n+7=-2n+5 | | 3*(x-2)-X=2+X | | 24/8=x/(24/2) | | 6x5=3 | | 5*(3x-2)-x=12x+6 | | 6e-3=16 | | 4/8m=14 | | 6x-4x=20-12+9 | | 3x-7=-2x9 | | 3/a=8 | | 12+4x=1+10+4x | | 137+x=15 | | 5-43x=2(x+25) | | (4/5)x=6-(1/5)x | | 2x/3-5=7x/3 | | −4w−7=13 | | 3/(x+1)-(1/5)=1/(2x+2) | | −4w−7=1 | | 14-3x=2(x+5) | | 2^(12x-2)=54 | | 5n-12=22 | | 3/(x+1)-1/5=1/(2x+2) | | 12(x+2)=10x | | 2xx3x=30 | | 1-x=7+x | | 2y=8+12 | | ×+×+y+y=30 | | x^(4/3)−9x^(2/3)+18=0 |